If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-40=10
We move all terms to the left:
8x^2-40-(10)=0
We add all the numbers together, and all the variables
8x^2-50=0
a = 8; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·8·(-50)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40}{2*8}=\frac{-40}{16} =-2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40}{2*8}=\frac{40}{16} =2+1/2 $
| 5=x/4-1 | | x+8/12=1-3/4*x | | 5x+24=2x+76 | | x+8/12=1-3x/4x | | a/9=18 | | p-5-5p=-17 | | 14=10-6x | | H(t)=20t-16t^2 | | X+90+4x=180 | | b+20/4-96=-48 | | 8x+9+10x-5=180 | | X^3+3x-88=0 | | b+32/4-96=-48 | | 7y+9y=15y | | 3/5x+22=-28 | | Y=24x+182 | | 7+3p=-1-5p | | x+x+4+x+2=66x | | 5x+3x=+7x | | 4/5-h=-1/2 | | x+x+4x+x+2=66x | | 114=2(2w-6)+2w | | 0=-4u^2-17u-4 | | n=24+7 | | 3x-6+x=120 | | 2x/3=24+6x | | 5/6=4m/9-1/3+2m/9 | | -3/5m+-2=66 | | -(1+6n)=-13-2n | | (3q+1)+4=3(q+4)-7 | | 3/5s=23/7 | | 11=4c-29 |